[心得] 6mm瞳孔直徑下..4階球差對眼睛度數的影 …

看板optical (眼鏡)作者 (progressive)時間15年前 (2009/09/28 21:58), 編輯推噓1(108)
留言9則, 3人參與, 最新討論串1/1
以下論述說明在瞳孔直徑在 6mm內時.. 僅考慮2階和4階球差影響前提下.. 最小模糊圓約坐落於於最大2階屈光誤差的3/4處.. 當瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D) ====================================================== 對於4階球差致使之2階屈光誤差.. #像差,像點位移誤差,屈光度誤差展開式互換推導 http://www.wretch.cc/blog/kramnik1/13622399 我們令2階屈光誤差為ΔF..2階焦距誤差為Δf.. r為光束與折射面交點與光學中心垂直之間距.. f(eye)為眼軸長..F(eye)為眼球總屈光度..a,b為比例常數.. 則 ΔF = a*r^2 Δf = -(a*r^2)*[f(eye)/F(eye)] = -b*r^2 設R為模糊圓半徑..模糊圓擷取處為與0階屈光誤差為0處距離為ΔS.. http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078602&p=3 http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078603&p=4 R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf R = r*[f(eye)-Δf]^(-1)*(ΔS-Δf) ….when ΔS >Δf ================================================================== R = r*[f(eye)-Δf]^(-1)*(Δf-ΔS) ….when ΔS <Δf 即ΔS < -b*r^2 => 0 < r <(-ΔS/b)^(1/2) 我們令ΔS為不變量..對上式之r微分.. dR/dr = [f(eye)-Δf]^(-1)*(Δf-ΔS) + r*(-1)* [f(eye)-Δf] ^(-2)*(2*b*r)*(Δf-ΔS) + r*[f(eye)-Δf]^(-1)*(-2*b*r) = [f(eye)-Δf]^(-1) *{(Δf-ΔS) – 2*b*r^2* [f(eye)-Δf] ^(-1)* (Δf-ΔS) -2*b*r^2} = 0 = [f(eye)-Δf]^(-1) *{(Δf-ΔS) – 2*b*r^2* [1/f(eye)]* (Δf-ΔS) -2*b*r^2} = 0 = [f(eye)-Δf]^(-1) *{(Δf-ΔS) + 2*Δf* [1/f(eye)]*(Δf-ΔS) + 2*Δf} ≒ [f(eye)-Δf]^(-1)* (3*Δf-ΔS ) 當dR/dr = 0 時..即r =[ΔS/(-3*b)]^(1/2) 則r = [ΔS/(-3*b)]^(1/2)有極大值 Rmax = [ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS .......(a) ========================================================================== R = r*{1/[f(eye)-Δf]}*(ΔS-Δf) ….when ΔS >Δf 即ΔS > -b*r^2 => h > r > (-ΔS/b)^(1/2) Rmax = h*[f(eye)]^(-1)*( -b*h^2-ΔS) ......................(b) =========================================================================== 由上述推導可知 最小模糊圓(the circle of least confusion )出現在條件 (a) = (b) [ΔS/(-3*b)]^(1/2)*[f(eye)]^(-1)*(-2/3)*ΔS = h*[f(eye)]^(-1)*( -b*h^2-ΔS) => (-4/27*b)*ΔS^3 = h^2*( b^2*h^4 + 2*b*h^2*ΔS +ΔS^2 ) 我們用graphmatica軟體可以跑出上式解出現在 ΔS ≒ -0.75*b*h^2 處 ........(c) http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078599&p=0 http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078600&p=1 ============================================================================== telescope@ptics.net 4. INTRINSIC TELESCOPE ABERRATIONS http://www.telescope-optics.net/spherical1.htm 此網頁給予相同的答案.. 即最小模糊圓約坐落於於最大2階屈光誤差的3/4處.. 最小模糊圓邊緣光線由 0.866h 處入射的光線所提供.. ============================================================================ 根據WAVEFRONT ABERRATION AND ITS ASSOCIATION WITH INTRAOCULAR PRESSURE , CENTRAL CORNEAL THICKNESS AND AXIAL LENGTH IN MYOPIC EYES by林楠 人眼瞳孔6mm內zernike分析數據 http://www.wretch.cc/album/show.php?i=kramnik1&b=23&f=1606078601&p=2 我們忽略掉其餘像差..僅考慮4th spherical aberration(Z12).. Z12 = 0.1 ±0.12 (μm) ============================================================================ 又 W(SA) = 6*(r/rmax)^4*Z12 根據像差,屈光度誤差互換式 △F(max) = -2*[δW/δ(r^2)] | r = rmax = -24*Z12*(1/rmax)^2 = -24* (0.1±0.12)*10^(-6) * (1/0.003)^2 = -0.26 ±0.32 (D) ......................................(d) ============================================================================= 將(c)代入(d)式.. △F(the least confused) = 0.75*(-0.26 ±0.32) = -0.195 ± 0.24 (D) 可知在瞳孔直徑6mm時..mpmva會比理想值多出 -0.195 ± 0.24 (D) ============================================================================= 由於人眼在暗室瞳孔直徑有可能比6mm還要大.. 需要瞳孔大於6mm的zernike分析數據.. 然而當瞳孔大於6mm時..其餘高階像差的影響比例可能會大幅增加.. 單單計算4th-order spherical aberration的影響可能不夠貼近實際值.. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.83.105 ※ 編輯: kramnik 來自: 118.168.82.200 (09/29 13:27)

09/30 12:17, , 1F
推!
09/30 12:17, 1F

10/01 16:48, , 2F
最近做了一堆數據(>30個) 暗室下紅綠的值平均比MPMVA多上
10/01 16:48, 2F

10/01 16:49, , 3F
0.25~0.75D 供參考
10/01 16:49, 3F

10/01 16:49, , 4F
指近視度數
10/01 16:49, 4F

10/01 18:13, , 5F
近視度數區間取高值較真實度數高-0.25 ~ 0D
10/01 18:13, 5F

10/01 18:15, , 6F
近視度數區間取低值較真實度數高 0 ~ +0.25D
10/01 18:15, 6F

10/01 18:15, , 7F
您的mpmva是取高值還是低值?
10/01 18:15, 7F
※ 編輯: kramnik 來自: 118.168.83.236 (10/01 18:16)

10/02 01:10, , 8F
高值低值是指? 一般就是最高視力值
10/02 01:10, 8F

10/02 01:15, , 9F
也許是暗室下瞳孔大於6mm 這部分未測量
10/02 01:15, 9F
文章代碼(AID): #1AmC4KEl (optical)
文章代碼(AID): #1AmC4KEl (optical)